
ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 1 of 30

International Journal of Applied Technology & Leadership

ISSN 2720-5215

Volume 3, Issue 1, January 2024

ijatl@org

Measuring System-on-a-Chip Data Leaks over

Radio Transmissions of Small Satellites

Tom Gallagher

Capitol Technical University (USA)

Dr. Michael E. Johnson MRAeS

Capitol Technical University (USA)

Abstract

Continuing the topics posed in “Identifying System-on-a-Chip Data Leaks over Radio

Transmissions of Small Satellites”, this article extends the exploration of data leakage of

system-on-a-chip transceivers to quantifying suspected leaks. Specifically, it poses a

measurement for the impact of a data leak on the device’s cryptographic security. Cryptography

is a key security element for satellite communication, so it is important to characterize the

impact that data leaks could introduce. In particular, this research contributes to the work posed

in “Screaming Channels: When Electromagnetic Side Channels Meet Radio Transceivers.” The

results show how the proposed measurement is calculated for four system-on-a-chip

transceivers.

1. Introduction

As demonstrated by Giovanni Camurati in Screaming Channels: When Electromagnetic Side

Channels Meet Radio Transceivers, some mixed-signal system-on-a-chip (SoC) transceivers

leak sensitive digital information into analog broadcasts (Camurati et al., 2018, 170-173).

Understanding How System-on-a-Chip Data can Leak over Radio Transmissions explained

Camurati’s work for non-engineers and provided context for the potential impact of the

Screaming Channels phenomenon on satellite communications. Identifying System-on-a-Chip

Data Leaks over Radio Transmissions of Small Satellites provided a process for detecting

unintentional digital noise leakage. However, the presence of a leak doesn’t necessarily equate

ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 2 of 30

to an exploitable weakness in a system. There are a variety of factors that can limit the impact

of an information leak. Building on the work presented in this series, this article presents a

methodology for measuring the impact of a Screaming Channels leak on a cryptographic

process used within the leaking SoC. Researchers using this methodology can determine how

impactful a leak is for specific configurations of hardware and software.

2. Backgroud

2.1. Revisiting Screaming Channels

The Screaming Channels phenomenon is an unintentional modulation of a transmission from a

mixed-signal circuit. Mixed-signal circuits have digital components that make calculations and

analog components that transmit/receive wireless signals (Das, 2023). The unintended

modulation is caused by the digital components’ power consumption affecting the voltage of

the shared source. Whenever digital components change state (e.g., unpowered to powered),

the components cause a small drop or spike in voltage potentially impactful to other components

sharing the power source. As analog components are highly susceptible to voltage changes,

these variations cause measurable impacts on wireless broadcasts made by these components

(Marshall, 2022, 109). In particular, the amplitude of the broadcast fluctuates with the voltage

changes. Understanding this interaction and the cybersecurity implications is not the focus of

this article but can be found in Part 1 of this series. Instead, this article will explain how a

researcher can measure Screaming Channels leaks in transceivers used by small satellites.

As demonstrated in Identifying System-on-a-Chip Data Leaks over Radio Transmissions of

Small Satellites, it is possible to detect leaks that are significantly impacting an analog

transmission by alternating the processor between short periods of “sleep” followed by activity.

Plotting emitted signals on a time-frequency diagram shows a solid line if the signal is

unaffected by the leak and a recognizable pattern, such as a dashed line, if the digital changes

are significantly impactful. Figure 1 shows the impact of alternating the processor activity on

two devices. The Wio-E5 signal (left) shows no apparent change despite the change in

processing, but the nRF52832 (right) shows a visible pattern created by the processor’s cycle.

ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 3 of 30

Figure 1: Comparison of time-frequency diagrams from two different transceivers while

alternating the processor between periods of sleep and activity. Note: contrast adjusted for

better visibility

2.2. Cryptography

Cryptography is a fundamental aspect of cybersecurity. When two electronic systems

communicate, it could be possible for an attacker to intercept the traffic. Sensitive data across

an unencrypted channel is at risk from such interception. This is particularly concerning for

satellite communications whose signals can cover more than a third of the Earth’s surface

(European Commission, 2017). There are a variety of different encryption algorithms having

different strengths, weaknesses, and performance characteristics. Generally, the encryption

process uses the value of a digital key to alter data such that it is unintelligible until decrypted

with the corresponding secret value (see Figure 2). This is a useful paradigm for electronic

communication as encrypted data, a.k.a. ciphertext, can be broadcast widely as long as the key

is kept secret.

ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 4 of 30

Figure 2: Cryptography in practice

As an easy way to understand encryption, consider this simple example using an “XOR”

encryption algorithm. With XOR encryption, each bit of the data is compared to the

corresponding bit of the key. If the bits are different, the resultant ciphertext bit is “1”, otherwise

it is “0”.

1110011 1101111 1101101 1100101 1110100 1100101 1111000 1110100 Plain Text: “sometext”

1101101 1111001 1110011 1100101 1100011 1110010 1100101 1110100 Encryption Key: “mysecret”

0011110 0010110 0011110 0000000 0010111 0010111 0011101 0000000 Ciphertext: “<XðåÎ”

In the above example, the phrase “sometext” is combined with the secret key “mysecret” using

the XOR algorithm. The resultant encrypted text is the set of characters “<XðåÎ” 1. In theory, an

attacker who captured the ciphertext cannot understand the original message without the secret

key. In this way, if two devices share a secret key, they can communicate securely even when

a malicious party is eavesdropping. In practice, the XOR algorithm is extremely weak and

susceptible to a number of cryptanalysis attacks (Wells, 2021). Fortunately, modern

cryptographic algorithms are stronger than the example.

2.3. Cryptanalysis

Cryptanalysis is the study and practice of decrypting ciphertext without the decryption key, or

more simply, breaking encryption to access the plain text. The simplest form of cryptanalysis

1
 Some bytes are non-printable, so the displayed ciphertext is shorter than the plain text

ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 5 of 30

is guessing every possible key value, also known as brute forcing. Consider an unrealistic

example where a key is only 4 bits long. In this case, there are only 16 possible values for the

key, so it is reasonable to test every possible key value to find the correct one. A modern key

size could be 256 bits or more. A key size of 256 bits means that there are 2256 possible keys. It

is difficult to conceptualize a number as large as 2256, but it is on par with the number of atoms

in the visible universe (Read, 2022, 30). For this key size, testing every possible key is not

realistic as it would theoretically take 3.3e56 years2 on a modern supercomputer (Ryan, 2021,

39).

Because brute forcing is unrealistic against large key sizes, cryptanalysis studies algorithms and

protocols for subtle weaknesses. For instance, the Triple Data Encryption Standard (3DES)

algorithm uses a 168-bit key, but due to a flaw in the algorithm, cryptanalytic attacks can reduce

the effective key size to only 112 bits (Schwenk, 2022, 16). Once a cryptanalytic attack is

identified against a cryptographic algorithm, it is generally avoided by developers. However, it

is challenging to replace cryptography deployed in systems, so many systems still use legacy

or even broken cryptography. The National Institute of Standards and Technology (NIST)

publishes a number of documents with current recommendations for encryption and digital

signatures (NIST, 2023).

Regardless of the key size and security of the algorithm, ciphertext is only as secure as its secret

key. If an attacker is able to compromise the encryption key, then decrypting the ciphertext is

trivial. While keys are often stored securely within the device, at some point, they are loaded

into the processor and used. While they are being used by the processor, keys may be vulnerable

to being stolen or leaked, such as through side-channel attacks (Wong, 2021, 291).

2.4. Side-Channel Attacks

Side-channel attacks provide a different attack vector against cryptography. Rather than the

cryptanalytic approach of cracking the algorithm without the key, side-channel attacks attempt

to glean the value of the key (or some other sensitive data) from unintentional data leaks. Once

the key is compromised, any intercepted ciphertext is at risk of decryption. Side-channel attack

techniques vary widely from detecting subtle processor emissions to timing millisecond

differences between packet transmissions (Kolokotronis & Shiaeles, 2021, 3-41). Generally,

side-channel attacks rely on observing some second or third order effect caused by the presence

of sensitive data that is otherwise inaccessible to the attacker.

Electromagnetic emissions caused by cryptographic processing are historically vulnerable to

side-channel attacks (Schwenk, 2022, 36). While traditional cryptographic side-channels are

direct emissions from the cryptographic processor, Screaming Channels leaks appear in a signal

transmitted by analog components within the device. For this reason, Screaming Channels leaks

represent a new attack vector for researchers to consider.

2
 330,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 years

ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 6 of 30

While side-channel attacks represent a significant cybersecurity concern, the risk is not

equivalent for all leaks. Subtle leaks may only expose a single bit of the cryptographic key and

be barely detectable above ambient noise. At the opposite end of the spectrum, significant leaks

could make every bit of the key detectable over a single encryption process. Depending on the

subtlety of the leak, different analysis techniques may have different levels of success. Simple

Power Analysis (SPA) is the simplest side-channel attack and measures the power used during

a single transaction. If a significant leak is present, the data or key can be inferred directly from

the power trace, such as in Figure 3 (Ouladj & Guilley, 2021, 21-22). Because SPA is highly

impacted by noise or outside influence, it is effective primarily in tightly constrained

environments (Randolph & Diehl, 2020, 3-5). More subtle leaks cause miniscule changes in the

signal and may be tied to an internal state of the processor rather than direct key values.

Differential Power Analysis and Correlation Power Analysis are analysis techniques that

aggregate signal traces and use statistics to infer portions of the key.

Figure 3: SPA of the Rivest-Shamir-Adleman (RSA) algorithm (Ouladj & Guilley, 2021, 22)

2.5. Cryptographic Characteristics

Cryptographic implementations vary widely in power utilization, speed, and encryption

strength. Operational requirements for the device may impose limitations on the encryption

used. Satellite hardware in particular tends to minimize power consumption to reduce battery

and solar array mass (Vaughan, 2023). Different cryptographic implementations can have an

impact on Screaming Channels leaks from the device, as described in the sections below.

2.6. Hardware vs Software Implementation

Some SoC transceivers, such as the Texas Instruments CC1310, offer a hardware encryption

module separate from the main processor (Texas Instruments, 2020). This gives software

developers the choice of implementing encryption within their application using the main

processor or offloading encryption to the dedicated module. Screaming Channels leaks are due

to the interaction of hardware components within the same SoC, so the physical location on the

chip where the encryption takes place is potentially impactful. Cryptography running on the

processor may cause a noticeable leak while a dedicated module may have negligible impact,

or vice versa. From a generic perspective, neither implementation is more or less secure, but

ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 7 of 30

for a specific device, analysis could produce dramatically different results for each

implementation. Researchers should be aware of this distinction and use it to contextualize their

findings. Depending on the purpose of the research, it may be desirable to focus on only one

implementation or analyze each implementation.

2.7. Key Size

Key size has a direct impact on a side-channel leak. Often in side-channel analysis, only part of

the key can be recovered through the leak (de Micheli & Heninger, 2020, 2-4). In these cases,

if the un-leaked portion of the key is small enough, brute forcing can ascertain the remaining

bits. It is intuitive why key size is thus impactful to side-channel attacks. Hypothetically, if a

leak exposes half a 128-bit key, an attacker would need to brute force the remaining

18,446,744,073,709,551,616 (264) possible key values, potentially accomplishable in 776 days

on a modern CPU or as little as 22 days on a purpose-built system (Dinaburg, 2019). While still

a significant hurdle, this is trivial compared to the task of brute forcing half a 256-bit key, which

would theoretically take billions of years using billions of supercomputers (Hoofnagle &

Garfinkel, 2022, 212). Researchers should be aware of the impact of key size on this type of

analysis. SoC manufacturers often provide libraries or hardware modules that support specific

key sizes, but application developers can choose to implement other algorithms with different

key sizes. Because key size has a significant operational impact on throughput and power

consumption, developers may be restricted by practical limitations, especially in constrained

environments like small satellites.

2.8. Side-channel Analysis Resistance

Some cryptographic algorithm implementations have built-in resistance to side-channel

analysis. Masking and hiding are well defined practices in reducing the risk from side-channels

(Lee & Han, 2020, 1-2). Masking is the process of overlaying random values with sensitive

values during intermediate steps of the encryption process and then removing the random

overlays. Assuming that the randomized masks are secret, then the intermediate values are

protected even if exposed through a side-channel. Hiding is the process of adding random

operations into the encryption process. The additional operations introduce challenges for side-

channel attacks because the signal traces of a cryptographic process would not directly align

with each other. In practice, masking and hiding make side-channel attacks more challenging

but not impossible. There have been published attack strategies against masked cryptographic

implementations, even recent quantum-resistant algorithms (Backlund et al., 2023, 8-10).

Masking and hiding are provided by some, but not all, cryptographic implementations.

Application developers often leverage manufacturer encryption modules or libraries to reduce

development costs. Of the four devices analyzed across this series of articles, none included

cryptographic implementations with masking or hiding. When manufacturers do not provide

resistant implementations, developers can use resistant third-party libraries. However, as with

ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 8 of 30

key size, side-channel resistance introduces additional power consumption and processing time,

which may be untenable for small satellites.

2.9. Evaluating Side-Channels

A signal unintentionally emitted from a device does not necessarily constitute a data leak. A

data leak implies that the signal carries internal information that can be obtained by an attacker.

To show that a signal is actually a leak, it is important to show a relationship between the signal

and some private data on the device. The relationship may not be obvious or direct. Instead, the

leak could be the result of subtle changes to the signal from which private data can be inferred.

While this makes it challenging to verify side-channel leaks, the field of statistics provides

valuable tools to show a correlation between the signal and the private data.

One such side-channel evaluation tool, Welch’s t-test, assesses whether a binary attribute has a

meaningful impact on some characteristic of the population (Bertoni & Regazzoni, 2021, 107).

For example, the t-test could help to determine if vegetarians have different heights than non-

vegetarians. Having sampled the population for this data, a researcher could put the height into

two groups: vegetarians and non-vegetarians. Based on this binary attribute, Welch’s t-test

could determine the likelihood that there is a statistically significant difference in the average

height of vegetarians and non-vegetarians. Figure 4 illustrates this example and how the results

of the t-test would be interpreted.

Figure 4: An illustration explaining Welch’s t-test to determine whether vegetarians and non-

vegetarians have the same average height using fake data

In side-channel analysis, the t-test can be useful in determining whether or not private data is

being leaked. The Cryptographic Engineering Research Group (CERG) at George Mason

University released the Flexible Open-source workBench fOr Side-channel analysis (FOBOS),

which includes a t-test module. FOBOS leverages the t-test to determine whether or not the

ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 9 of 30

value of the private encryption key has a detectable impact on a non-private power trace

(CERG, 2019). To perform this test, the target device performs a number of encryptions using

a single encryption key and encryptions using a random encryption key. The power traces from

each encryption are categorized as using the fixed key or a random key, which is the binary

attribute for the t-test. The t-test determines if there is a statistical difference between the two

groups at any given time slice of the power traces. If so, then the key value is impacting the

signal, or stated differently, the power signal provides information about the private key, which

is the basis of a data leak.

Similar to the fixed-vs-random key t-test, it is possible to more closely examine the impact of

specific key/plaintext bits. These more detailed bitwise examinations are referred to as leakage

models. Leakage models show how the cryptographic key and plaintext are related to the leaked

signal. There are a wide variety of leakage models including least-significant-bit (LSB), least-

significant-2-bits (LS2B), most-significant-bit (MSB) and Hamming weight (HW) (Zhou et al.,

2022, 222-223). Shown in Table 1, each model describes a categorization based on a single

byte of the key and/or plaintext. LSB and MSB look at a single bit of a target byte providing

two groups (where the bit is 0 and where it is 1). LS2B looks at two bits of the target byte

creating four groups (00, 01, 10, and 11). Hamming weight counts the number of 1’s in a target

byte of the key resulting in 9 groups with values 0 through 8. More complex leakage models

can be categorized based on a relationship between the key and plaintext, such as Hamming

Distance, which counts the bit flips between the key and plaintext.

Leakage Model

Example: 010110010 Example: 11100101

Salient bits Group Salient bits Group

LSB [Possible groups: 0,1] 010110010 0 11100101 1

MSB [Possible groups: 0,1] 010110010 0 11100101 1

LS2B [Possible groups: 00,01,10,11] 010110010 10 11100101 01

HW [Possible groups: 0,1,2,3,4,5,6,7,8,9] 010110010 4 11100101 5

Table 1: Example of LSB, MSB, LSB2, and Hamming Weight

Similar to how Welch’s t-test provides a metric regarding whether two groups are related,

leakage models determine if the grouping has a statistically significant impact for the target

byte. A useful metric for measuring the impact of the groupings is the signal-to-noise ratio

(S2N). A signal-to-noise ratio compares the useful information (the signal) to undesirable

information (the noise). For the purposes of side-channel analysis, useful information is any

observable difference in the signal amplitude between the leakage model groupings (Buhan &

Mangard, 2021). The not useful information is any deviation that is not related to the trace’s

leakage group. Put simply, a high S2N value indicates that the categorization provides

ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 10 of 30

meaningful information, which means the signal is a leak, and a low S2N value indicates that

the categorization is not meaningful.

3. Measuring Screaming Channels Leaks

3.1. Assumptions

Broadcasting of radio transmissions must adhere to legal restrictions for the locality in which

the transmission is made. Additionally, researchers must be authorized to perform testing for a

target device. These concerns are covered extensively in Identifying System-on-a-Chip Data

Leaks over Radio Transmissions of Small Satellites. The process described here assumes that

researchers perform analysis legally and ethically.

3.2. Software Development

Background on developing firmware for small satellite SoC transceivers was provided in

Identifying System-on-a-Chip Data Leaks over Radio Transmissions of Small Satellites. This

section describes additions to the firmware development proposed in that article. The additions

described here are more complex than those described in the prior article and could require

additional time and expertise in development.

For direct control of the timing for exercising the process, the firmware should ideally provide

a wired communications path. Wireless communications should be avoided as they could

impact the signal being analyzed. Universal Asynchronous Receiver/Transmitter (UART) is a

communications protocol frequently supported by SoCs. SoC development boards may expose

a UART interface over Universal Serial Bus (USB). Regardless of the communications path

used, it should provide a low latency method to programmatically trigger functionality on the

device, pass data to the device, and receive data from the device.

To produce the data required for this analysis, the application logic for the firmware should

listen on the wired communications path for commands from the controlling device.

Specifically, the firmware should be able to perform a given number of encryption processes

with a specified key/plaintext. The application should also deliver status updates back across

the communications path, such as when the encryption process completes. Additionally, if more

than one encryption implementation is to be tested, such as for devices that provide both

hardware and software implementations, then it is valuable for the application to accept

commands that dictate which implementation to use.

Below is pseudocode for the firmware’s application logic discussed above3:

main() {

 CypherText = "";

 initBoard(); //enable general device hardware

3
 Source code for the devices analyzed in this research is available through the link in Contributions

ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 11 of 30

 initRFBoard(); //enables the Radio

 disableSpecialRFFeatures(); //such as Frequency hopping

 SetFrequency(900MHz);

 SetPower(11); //Power levels are vendor specific

 StartContinuousRadioTransmit(); //transmit a dummy signal

 while(1) { //loop this logic until device is powered off

 SendOutput(“Awaiting Command”)

 Command = AwaitExternalInput()

If (Command = “Encrypt”) {

Repetitions = AwaitExternalInput()

Algorithm = AwaitExternalInput() //If more than one

 Key = AwaitExternalInput()

 Plaintext = AwaitExternalInput()

 SendOutput(“Starting Encryption”)

 For(Repetitions) {

 CypherText = Encrypt(Key, Plaintext,

Algorithm);

 }

 SendOutput(“Encryption Complete”)

 }

 }

}

Unlike the firmware developed previously in this series, the firmware described here now

depends on an external controller. This external component is a separate application script that

coordinates capturing traces during encryption periods. The logic for this script is

straightforward, but robust testing should be performed as complexities arise when passing data

between devices. A key aspect of the controlling script is correctly configuring the frequency

and gain of the software-defined radio receiver. The GNU Radio Companion (GRC) user

interface provided in the prior article can be used to identify acceptable values for these settings.

The importance of selecting appropriate gains should not be overlooked. Gain amplifies the

received signal at various stages of its processing. Too little gain and the received values will

be insignificant; too much gain and background noise overpowers the signal. Tailoring the

receiver to the signal under analysis is an iterative process. While this iteration is part of the

collection/analysis process, developing a controlling script that can easily modify these values

is beneficial.

ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 12 of 30

Below is pseudocode for the external controller script discussed above4:

Traces_to_capture = X

main() {

 EstablishCommsWithTargetDevice()

 EstablishConnectionWithReceiver()

ConfigureReceiver(TargetFrequency, Gain)

 While(GetTargetDeviceResponse() != “Awaiting Command”) {

 Wait

}

 For(Traces_to_capture) {

 Key = Random()

 Plaintext = Random()

 Receiver_StartTrace()

 SendCommandToTargetDevice(“Encrypt”)

 SendCommandToTargetDevice(1) //Repetitions

 SendCommandToTargetDevice(Key)

 SendCommandToTargetDevice(Plaintext)

 While(GetTargetDeviceResponse() != “Encryption Complete”)

{

 Wait

}

 Trace = Receiver_CompleteTrace()

 Save(Trace, Key, Plaintext)

 }

}

The guidance in this section recommends one approach to develop firmware capable of

supporting this analysis. Alternate approaches could be necessary depending on the target

device. For instance, if a wired communications path is not feasible, then it may be necessary

to use different means to trigger the encryption process. Different collection techniques will

have varying impacts on the resultant traces, such as trace alignment, and could require

additional effort during analysis.

4
 Source code for the devices analyzed in this research is available through the link in Contributions

ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 13 of 30

3.3. Collecting the Data

With the external script and firmware configured, the target device located inside an RF

enclosure is attached to the external command laptop. A HackRF One software-defined radio

is connected to the laptop with its antenna connected inside the enclosure, see Figure 5. The

laptop executes the script and records a set number of traces. Initially, while establishing a test

environment, hundreds of traces are sufficient to show the configuration is functional. For

performing the analysis, the greater the number of traces, the more accurate the results. Sizes

of traces will vary depending on the device setup and collection methodology, so researchers

will have to account for storage and processing time based on their resources.

Figure 5: The environment for collecting traces

3.4. Analyzing the Data

This section is intended to provide an outline for the process of analyzing traces to measure the

impact of a detected Screaming Channels leak. It would be easy to assume that such a process

is linear, and that the severity of a leak could be determined through a set number of steps. In

reality, the process requires iterative testing of configurations to optimize visibility. It may be

challenging to perform this analysis without prior experience. It may be helpful for researchers

to analyze a known-vulnerable target prior to assessing an unconfirmed leak. Understanding

the output from a known leak will aid in interpreting the results of an unconfirmed leak. For

ease of entry into this research, data collected from this study is available through a link in the

Contributions section of this article. Researchers can gain experience in analyzing the provided

data before assessing a new target.

An optional first step in analyzing the data is trimming each trace to focus on the segment

containing the cryptographic process. There is a significant lag created by initialization/closeout

ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 14 of 30

of the software-defined radio (SDR) and communication between devices. The lag results in a

larger than necessary trace that captures uninteresting data both before and after the

cryptographic processing. While it is possible to complete the analysis against the full range of

the trace, such processing can create unrealistic hardware requirements or drastically increase

the analysis timespan. However, it is difficult to predict where in the trace the cryptographic

process occurs. In some cases, the cryptographic process may cause a perceptible change in the

trace such as a drop in amplitude allowing researchers to easily hone in on the portion of

interest. It is also possible to trigger visible changes in the signal immediately prior to and after

the encryption process; altering transmission frequency or broadcast power are two such

techniques. Figure 6 shows how spiking the signal strength immediately before and after the

encryption process highlights the interesting part of the trace. In the case of the CC1310, the

sample trace is reduced from approximately 800,000 samples to around 20,000 samples,

resulting in a 97% savings in storage and processing.

Figure 6: A full traces of the Texas Instruments CC1310 using signal spikes to highlight the

start and end of the encryption process

Each trace is a series of snapshots measuring the signal strength at a specific time. The analysis

compares the xth sample of each trace and assumes that the device was doing the same thing at

each time across all traces. For instance, the 316th sample of each trace could be the middle of

the first round of encryption and the 1099th sample may be the start of the last round of

encryption. The device performing the same action at any given trace index is a core assumption

of the analysis. In an ideal world, because every trace is generated by the same process, they

would be completely aligned. In reality, the collection process introduces small variability in

each trace. Failure to properly account for this misalignment can distort the results. Signal

alignment is a complex topic with a variety of proposed solutions (Pearson et al., 2019, 21).

Using an RF enclosure reduces external noise while the full process control provided by the

custom firmware provides consistency across traces. Using a script to ensure that traces are

properly aligned is recommended. An alignment script is available in the Contributions section

of this article.

Cryptographic processing

Frequency

spikes

ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 15 of 30

With well-aligned traces, the analysis can continue with evaluation of the leakage models.

Leakage models label each trace according to key and plaintext values for that trace. The

analysis then determines if that leak model categorization is impactful to the set of traces at

each time slice. For example, consider a hypothetical case where each trace is binned according

to whether the first bit of plaintext is a 0 or a 1. If analysis showed that the variance between

the groups is greater than the ungrouped variance, then there would be a meaningful difference

in the signal that correlated to the first bit of plaintext. The correlation is greater if the variance

between the group’s means is larger or if the noise is smaller. There are a wide variety of

possible leakage models that can be used to categorize the traces. Once categorized, the process

of calculating the signal-to-noise ratio is the same. Below is pseudocode to calculate the SNR

for a leakage model discussed above5:

GroupMeans = []

TraceGroups = OrganizeByLeakageModel(Traces)

For (group_id, group_traces in TraceGroups){

 GroupMeans[group_id] = CalculateMean(group_traces)

}

MeanVariance = CalculateVariance(GroupMeans)

For (trace_id, trace in Traces) {

 TraceDifferences[trace_id] = trace -

GroupMeans[GetGroupID(trace)]

}

DifferenceVariance = CalculateVariance(TraceDifferences)

S2N = MeanVariance / DifferenceVariance

Once the SNRs are calculated, it is useful to view them graphically. The Python module

matplotlib is commonly used in data science to provide this capability. While the visual of SNR

over time for a leakage model is useful, it does not provide an overall measurement for a

potential leak. This article proposes an analytic to measure the impact of a leak on a device’s

cryptography. SNR can be impacted by a number of factors creating biased results. To measure

the significance of a leak, it is useful to compare the SNR of the potential leak to the background

SNR while the leak is not present. This article proposes that such a measurement can be

accomplished by comparing the mean of the background noise to the maximin SNR. This ratio,

hereafter the leak ratio, would be computed by dividing the max SNR by the trimmed mean of

the SNR values. A trimmed mean is the average of a set of values after removing some number

of the greatest and least values from the set. The formula for calculating the leak ratio would

thus be:

LeakRatio = Max(SNRs) / TrimmedMean(SNRs)

5
 Source code is available through the link in Contributions

ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 16 of 30

A challenge in calculating the leak ratio is in determining the portion of data to remove for the

trimmed mean. A simple way of accomplishing this would be to collect significantly larger

traces than needed to ensure that the volume of samples during normal processing dwarfs the

samples containing cryptographic processing. An alternative solution would be to include logic

during collection to time the encryption routine and ensure that its time slice fits within the

trimmed data. For example, if using a 20% trimmed mean, the encryption process would need

to last no longer than 20% of the trace’s total time.

4. Results

4.1. Nordic Semiconductor nRF52832

During the 2018 Screaming Channels research, the Nordic Semiconductor nRF52832 was

shown to exhibit a leak across its broadcast signal. Additionally, the framework provided in

Identifying System-on-a-Chip Data Leaks over Radio Transmissions of Small Satellites

similarly showed strong evidence of a leak in the device. As a Bluetooth transceiver, the

nRF52832 is not a viable communications device for small satellites, but including this device

in the analysis provides a baseline for how an exploitable leak appears in the analysis results.

The other benefit to including the nRF5232 in this analysis is that the Screaming Channels

researchers shared traces from the original study in a public repository (Camurati, 2021).

Because the provided traces use random plaintext and a random key, only the SNR analysis can

be performed; a t-test requires a group of “fixed key” traces as well. The traces were analyzed

using a Jupyter Notebook that implements the previously described analysis. Figure 7 shows

that each analyzed leakage model displays a clear spike in the signal-to-noise ratio at

approximately the same time slice. Every byte6 of the 128-bit key has a unique SNR for each

model, meaning that different models could be more or less accurate in predicting specific

bytes. Overall, there is a striking difference between the SNR of the non-cryptographic

processing and the cryptographic processing, which begins around time slice 850 in the figure.

6
 A byte is an 8-bit segment of data

ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 17 of 30

Figure 7: SNRs for the nRF52832 traces using the LSB, LSB2, MSB, and HW leakage models.

Visually, it is clear that the SNR during the cryptographic processing reaches more than 10

times that of other processing. Using the formula proposed above, the leak ratio can be

calculated with the results in Table 2. While different bytes of the key are exposed to varying

degrees by each of the leakage models, aggregating these metrics shows that the MSB leak

model provides an average leak ratio of 135.3. Because the 2018 Screaming Channels research

proved that the cryptographic key can be compromised across this leak, it stands to reason that

devices with similar or larger leak ratios are at higher risk to such compromise. Side-channel

analysis and cryptanalysis are complex fields with evolving techniques and challenges, so a

high leak ratio alone should not be taken as proof that a leak is exploitable. Instead, the leak

ratio provides one metric that can be calculated without extensive background in the field.

ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 18 of 30

 LSB LSB2 MSB HW

Byte 1 74.4 4.3 36.8 11.8

Byte 2 55.1 12.9 88.5 4.2

Byte 3 12.9 7.7 201.1 11.2

Byte 4 62.0 8.5 119.9 16.7

Byte 5 44.9 22.5 88.6 18.0

Byte 6 6.9 6.1 38.2 7.4

Byte 7 6.9 6.2 34.7 5.9

Byte 8 43.5 7.7 291.7 4.3

Byte 9 38.9 20.2 207.2 3.7

Byte 10 7.2 6.5 287.7 14.2

Byte 11 18.6 13.3 195.7 12.1

Byte 12 14.0 5.1 17.5 15.4

Byte 13 59.2 20.3 183.3 5.2

Byte 14 5.2 6.3 99.3 9.4

Byte 15 14.4 5.5 104.1 13.0

Byte 16 33.0 9.9 170.2 24.5

Average 31.1 10.2 135.3 11.1

Table 2: Leak ratio of LSB, LSB2, MSB, and HW for nRF52832

Because the traces provided by the original researchers did not include fixed-key/fixed-

plaintext traces, a Welch’s t-test could not be performed against these traces. In order to

accommodate a t-test for the nRF52832, additional traces were collected for this article. The

samples were collected, filtered, and aligned according to the process described above. After

aligning the samples, the samples were able to be processed by the t-test. For this test, two sets

of 10,000 traces were collected where one set uses a single encryption key for every trace and

the other uses a random key for every trace. The t-test measures the probability that the averages

of each group are the same. If the averages are expected to be different, then we have evidence

that the key value has an impact on the signal. Figure 8 graphs the probability-value (pval) from

the t-test at each time slice. Based on the values in this graph, a large section of the trace,

approximately from sample 310,000 to sample 350,000, the pval is generally very low, less

than 0.1e-7 (i.e., 0.00000001). Despite appearances, this is not a bar graph; there are multiple

values at the bottom and top of the graph resulting in consecutive vertical lines. The values in

this segment of the trace are likely to be influenced by the value of the encryption key, so there

is strong evidence that a leak is present. It stands to reason that this is the encryption timespan.

ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 19 of 30

Figure 8: Welch’s T-test comparing variable and fixed key traces of the nRF52832. Note that

the y-axis is clipped at 1e-7 and all non-visible data is above that threshold.

Performing cryptanalysis on the leak is beyond the scope of this article and was already

completed during the 2018 study. However, if this was a device with an unverified leak, then

the calculated leak ratio would suggest a likelihood that the leak is significant. The t-test results

would highlight the trace segment during which the leak is most likely to occur.

4.2. Texas Instruments CC1111

As discussed previously in this series, the CC1111 is nearly identical to the CC1110 used in the

Tartan Artibeus small satellite. Identifying System-on-a-Chip Data Leaks over Radio

Transmissions of Small Satellites identified a potential Screaming Channels leak in the CC1111

at 868.5 MHz. The CC1111 was the only device, other than the known vulnerable Bluetooth

transceiver, which showed significant indications of a leak according to the proposed detection

technique.

Due to development environment licensing issues, the firmware for the CC1111 was not

developed with a communications path to the command laptop. To capture the required traces

despite this limitation, the firmware was configured to loop the following process at startup:

turn radio transmitter off, wait 50 milliseconds, turn radio transmitter on, perform single

encryption, and finally wait 1 millisecond. The command laptop initiated a trace on the SDR at

the target frequency and then the CC1111 was powered on. Because of the visible impact of

enabling and disabling the radio, as seen in Figure 9, it was straightforward to programmatically

separate the aggregated traces into individual samples capturing periods where the transmitter

was on. A Python Jupyter Notebook script was used to separate the traces and is provided in

the repository linked in the Contributions section. The most significant issue with collecting

samples in this manner is the potential for trace misalignment during the separation process.

ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 20 of 30

Because the amplitude spikes in the trace happened at precise intervals, there is confidence that

separation did not cause significant misalignment. Additionally, the signal alignment routine of

the analysis can correct minor alignment issues.

Figure 9: Four encryption cycles of the CC1111 showing distinction between each cycle

Welch’s t-test of variable vs fixed keys showed interesting results for the CC1111. As can be

seen in Figure 10, there are many areas in the trace where the t-test pval drops below 0.1e-7. A

low p-value is evidence that the values were likely to be generated by different systems. Ideally,

low pvals would be expected only when the value of the key was impactful to the resultant

signal. In the case of the CC1111 capture, the encryption process occurs at the end of the

collection, so there should be no correlation with the key across the entire trace. Instead, it is

likely that the process of creating/collecting the traces introduced bias across the trace.

However, it is noteworthy that the low pvals are more dense toward the end of the trace, around

slice 35000, when the cryptographic process is expected to occur. If the CC1111 traces could

be collected using the recommended process, it is likely that the low pvals outside of the

encryption window would mostly or entirely disappear.

Device

startup

Encryption

Process

ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 21 of 30

Figure 10: Welch’s T-test comparing variable and fixed key traces of the CC1111

Unlike the nRF52832, the CC1111 did not have leakage models that showed significant SNR

spikes during the encryption process. Figure 11 graphs the SNRs during the entirety of the trace

and shows no clear segment where the SNR is higher than the rest of the trace. As expected,

these SNRs yielded low leak ratios as well. The average leak ratios for the LSB, LSB2, MSB,

and HW models were 33.4, 10.3, 33.7, and 12.7 respectively. While the t-test shows a potential

area of interest, the leak ratio for this device is relatively low. Performing cryptanalysis to verify

the exploitability of such a leak is outside the scope of this research. Based on the measurements

proposed here, the leak is significantly weaker than the nRF52832 and would likely require

additional traces or alternative techniques to successfully compromise the key if possible.

ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 22 of 30

Figure 11: Computed SNR for the CC1111 using the LSB, LSB2, MSB, and HW leakage

models.

4.3. Texas Instruments CC1310

As discussed previously in this series, the CC1310 is used in the Monarch chip satellite.

Identifying System-on-a-Chip Data Leaks over Radio Transmissions of Small Satellites

identified anomalous signal artifacts for the CC1310 at 847.9 MHz. These anomalies did not

adhere to the framework's prediction for a Screaming Channels leak, but the signal will be

evaluated here to determine if a leak is present.

To support this research, encryption traces for the CC1310 were captured and aligned using the

recommended process. Welch’s t-test computed the likelihood that the value of the key was

impactful of the resultant signal. As seen in Figure 12, several pvals from the t-test were low,

below 0.1e-7. These segments of low pvals could indicate when encryption is taking place and

impacting the resultant signal.

ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 23 of 30

Figure 12: Welch’s T-test comparing variable and fixed key traces of the CC1310

Similar to the CC1111, the CC1310 did not show significant SNR spikes during encryption.

Figure 13 graphs the SNRs during the entirety of the trace and shows no clear segment where

the SNR is higher than the rest of the trace. The average leak ratios for the LSB, LSB2, MSB,

and HW models were 30.2, 9.6, 28.3, and 11.2 respectively. Like the CC1111, the leak ratio

indicates that the device is likely more challenging to successfully extract a key than the

nRF52832. Based on the t-test, there is a clear segment for cryptanalysis researchers to focus

efforts.

ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 24 of 30

Figure 13: Computed SNR for the CC1310 using the LSB, LSB2, MSB, and HW leakage

models.

4.4. Seeed LoRa Wio-E5

The Seeed LoRa Wio-E5 provides similar capabilities to the transceiver used by the AmbaSat

project. Identifying System-on-a-Chip Data Leaks over Radio Transmissions of Small Satellites

identified unintentional broadcasts by the device but none that correlated to patterns predicted

from Screaming Channels leaks. It is unlikely that the analysis performed here will identify a

leak, but the device is included for the sake of completeness.

Like the CC1111, the collection process was not implemented using the recommended

approach due to issues in establishing a wired communication route between the command

laptop and the device. Instead, the device was configured to loop through transmit, encrypt, and

sleep patterns. Also similar to the CC1111, this alternate collection method appeared to

introduce anomalous artifacts as the t-test shows low pvals across most of the trace, Figure 14.

ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 25 of 30

Figure 14: Welch’s T-test comparing variable and fixed key traces of the Wio-E5

The Wio-E5’s results from the SNR analysis and leak ratio calculation were similar to those of

the CC1310. Figure 15 shows the SNRs of the leakage models with no clear indication of the

encryption process. Average leak ratios for the LSB, LSB2, MSB, and HW models were 31.2,

9.8, 30.6, 12.4 respectively. Because the previous article showed no indication of a Screaming

Channels leak for this device, it is possible that these leak ratios could indicate a lower risk of

an exploitable leak.

ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 26 of 30

Figure 15: Computed SNR for the Wio-E5 using the LSB, LSB2, MSB, and HW leakage

models.

5. Countermeasures

Screaming Channels is a recognized vulnerability. Both hardware manufacturers and software

developers share responsibility in ensuring SoC transceivers are resilient against this potential

weakness. Attackers do not depend on a single attack vector; likewise, defenders should avoid

complacency of relying on a single defense mechanism. Defense in depth is the strategy of

deploying multiple countermeasures in the hope of eliminating threats with the understanding

that the best that can be done is mitigating part of the risk.

Countermeasures specific to Screaming Channels include practices such as masking or hiding,

better known as cryptanalytic resistant algorithms. Device manufacturers can use such

algorithms in dedicated hardware modules or supplied software libraries. Application

developers should ensure that provided algorithms are resistant or implement third-party

libraries with these features. Another countermeasure with potentially fewer moving parts is

the idea of alternating signal strength, which introduces noise into the signal amplitude making

side-channel analysis more complicated without affecting the signal’s intended

frequency/phase modulation.

ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 27 of 30

Perhaps some of the more effective methods are that of frequent rekeying and the use of

frequency hopping; though both introduce their own challenges. For re-keying, NIST provides

specific guidance on the cryptoperiod (i.e., lifespan) of a key based on its use and purpose

(NIST, 2020). Re-keying in accordance with NIST recommendations, or even more frequently,

provides a “moving target” for Screaming Channels attacks. Frequency hopping likewise

introduces complexity for the side-channel analysis by moving the signal in a pre-planned

random pattern across multiple channels. Usable spectrum in frequency hopping must be broad

enough to allow for sufficient randomization. While re-keying and frequency hopping provide

significant protection, as stated, reliance on any single countermeasure is insufficient. Use

defense in depth to provide sufficient protection from Screaming Channels attacks.

6. Conclusions

Pretend momentarily that you want to find out if there are mice in your home. If you set a trap

and it catches a mouse, you know there was at least one mouse in your home. However, if the

trap does not catch a mouse, can you be confident your home is mice-free? Of course not.

Similarly, if researchers demonstrate extracting a cryptographic key across a side-channel leak

for a particular device, it is clear that the device is susceptible to side-channel attacks. If

researchers fail to exploit a target device, though, it does not assure that a leak is absent. It’s

possible that the researchers were not looking at the correct frequency, using the correct

cryptanalysis methods, or aggregating sufficient data. For this reason, it is helpful to use

statistics like t-test p-values and signal-to-noise ratios to characterize leaks. Additionally, this

article proposes a new metric, leak ratio, that compares the SNR during cryptography to the

SNR during non-cryptographic processing. The leak ratio accounts for background SNR and

provides a metric as to how significant the leak is against a cryptographic key using a specific

leak model. Researchers can use the leak ratio to better characterize potential leaks prior to

attempting cryptanalysis to confirm the leak.

This article demonstrated a process to collect and analyze signal traces for Screaming Channels

leaks. Four target devices were evaluated based on the findings from Identifying System-on-a-

Chip Data Leaks over Radio Transmissions of Small Satellites. The first device, the nRF52832,

was a Bluetooth SoC known to exhibit a leak while the other devices were SoC transceivers

that are used or could be used for small satellite communication. Two of the small satellite

transceivers, the CC1111 and CC1310, exhibited suspicious signals as highlighted in the prior

article. The t-test of these two devices suggested a time slice during which a leak could be

present. The final device, the Wio-E5, showed no suspicious signs of a leakage during prior

analysis in this series. The leak ratios of all three small satellite transceivers were relatively

close to each other and orders of magnitude smaller than the known leak of the nRF52832.

Leak ratio is a proposed measurement for the impact of a leak. These initial findings would

suggest that the potential leaks of the three satellite transceivers are less impactful than the leak

on the Bluetooth device. However, because the exploitability of the leak was only confirmed

on one of the four devices, it is unclear how effective using leak ratio as a measure truly is.

ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 28 of 30

Future efforts against a wider array of targets could help to prove leak ratio as an effective

measurement for Screaming Channels leaks.

References

1. Backlund, L., Ngo, K., Gärtner, J., & Dubrova, E. (2023, October 4). Secret Key Recovery

Attacks on Masked and Shuffled Implementations of CRYSTALS-Kyber and Saber.

Applied Cryptography and Network Security Workshops, 13907, 159–177. 10.1007/978-

3-031-41181-6_9

2. Bertoni, G. M., & Regazzoni, F. (Eds.). (2021). Constructive Side-Channel Analysis and

Secure Design: 11th International Workshop, COSADE 2020, Lugano, Switzerland, April

1–3, 2020, Revised Selected Papers. Springer International Publishing. 10.1007/978-3-

030-68773-1

3. Buhan, I., & Mangard, S. (2021, May 7). Computing the Signal-to-Noise Ratio (SNR) for

SCA. Ileana Buhan. Retrieved December 1, 2023, from

https://ileanabuhan.github.io/general/2021/05/07/SNR-tutorial.html

4. Camurati, G. (2021, April 23). The Screaming Channels project. EURECOM GitHub

Pages. Retrieved November 30, 2023, from https://eurecom-

s3.github.io/screaming_channels/#Datasets

5. Camurati, G., Poeplau, S., Muench, M., Hayes, T., & Francillon, A. (2018). Screaming

Channels: When Electromagnetic Side Channels Meet Radio Transceivers. Proceedings of

the 25th ACM conference on Computer and Communications Security, CCS '18(October),

163–177. 10.1145/3243734.3243802

6. Cryptographic Engineering Research Group. (2019). T-test Leakage Assessment —

FOBOS User Guide 2.0 documentation. CERG GMU. Retrieved November 1, 2023, from

https://cryptography.gmu.edu/documentation/fobos/t_test.html

7. Das, S. (2023, August 9). Mixed Signal Circuit - Definition, Design, Examples. Electronics

Tutorial | Best Electronics Tutorial Website. Retrieved November 30, 2023, from

http://www.electronicsandyou.com/mixed-signal-circuit-definition-design-examples.html

8. de Micheli, G., & Heninger, N. (2020, December 11). Recovering cryptographic keys from

partial information, by example. IACR Cryptology ePrint Archive, 2020(1506), 1-47.

https://eprint.iacr.org/2020/1506

9. Dinaburg, A. (2019, November 27). 64 Bits ought to be enough for anybody! Trail of Bits.

Retrieved December 1, 2023, from https://blog.trailofbits.com/2019/11/27/64-bits-ought-

to-be-enough-for-anybody/

10. European Commission. (2017, July). Digital Transformation Monitor - Low-Earth Orbit

satellites: Spectrum access. Advanced Technologies for Industry. Retrieved October 30,

2023, from https://ati.ec.europa.eu/sites/default/files/2020-06/Low-

Earth%20Orbit%20satellites%20-%20Spectrum%20access%20%28v1_0%29.pdf

11. Hoofnagle, C. J., & Garfinkel, S. L. (2022). Law and Policy for the Quantum Age.

Cambridge University Press.

12. Kolokotronis, N., & Shiaeles, S. (Eds.). (2021). Cyber-Security Threats, Actors, and

Dynamic Mitigation. CRC Press/Taylor & Francis Group.

ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 29 of 30

13. Lee, J., & Han, D.-G. (2020, May 16). Security analysis on dummy based side-channel

countermeasures—Case study: AES with dummy and shuffling. Applied Soft Computing

Journal, 93(2020), 1-9. 10.1016/j.asoc.2020.106352

14. Marshall, A. (2022). Noise Effects in Analog Systems. In Mismatch and Noise in Modern

IC Processes (pp. 109-117). Springer International Publishing.

https://link.springer.com/chapter/10.1007/978-3-031-79791-0_10

15. NIST. (2020, May). Special Publication 800-57.

https://csrc.nist.gov/pubs/sp/800/57/pt1/r5/final

16. NIST. (2023, May 8). Cryptographic Standards and Guidelines | CSRC. NIST Computer

Security Resource Center. Retrieved December 6, 2023, from

https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines

17. Ouladj, M., & Guilley, S. (2021). Side-Channel Analysis of Embedded Systems: An

Efficient Algorithmic Approach. Springer International Publishing.

18. Pearson, K., Griffith, C., Zellem, R., Koskinen, T., & Roudier, G. (2019, January). The

American Astronomical Society, find out more The Institute of Physics, find out more

Ground-based Spectroscopy of the Exoplanet XO-2b Using a Systematic Wavelength

Calibration. The Astronomical Journal, 157(1), 21-40. 10.3847/1538-3881/aaf1ae

19. Randolph, M., & Diehl, W. (2020). Power Side-Channel Attack Analysis: A Review of 20

Years of Study for the Layman. Cryptography, 4(2), 1-33. 10.3390/cryptography4020015

20. Read, C. L. (2022). The Bitcoin Dilemma: Weighing the Economic and Environmental

Costs and Benefits. Springer International Publishing.

21. Ryan, M. (2021). Ransomware Revolution: The Rise of a Prodigious Cyber Threat.

Springer International Publishing.

22. Schwenk, J. (2022). Guide to Internet Cryptography: Security Protocols and Real-World

Attack Implications. Springer International Publishing.

23. Sergienko, I. V., Zadiraka, V. K., & Lytvyn, O. M. (2022). Elements of the General Theory

of Optimal Algorithms. Springer International Publishing.

24. Texas Instruments. (2020, June). CC13x0, CC26x0 SimpleLink™ Wireless MCU

Technical Reference Manual. Retrieved October 31, 2023, from

https://www.ti.com/lit/ug/swcu117i/swcu117i.pdf?ts=1698707923592&ref_url=http%25

3A%252F%252Fwww.ti.com%252Flit%252Fpdf%252Fswcu117

25. Vaughan, A. (2023, February 6). How to optimize size and power consumption in LEO

satellites with FDAs. TI E2E. Retrieved December 1, 2023, from

https://e2e.ti.com/blogs_/b/analogwire/posts/size-and-power-in-leo-satellites-with-fdas

26. Wong, D. (2021). Real-World Cryptography. Manning.

27. Zhou, J., Adepu, S., Alcaraz, C., Batina, L., Casalicchio, E., Chattopadhyay, S., Jin, C.,

Lin, J., Losiouk, E., Majumdar, S., Meng, W., Picek, S., Shao, J., Su, C., Wang, C.,

Zhauniarovich, Y., & Zonouz, S. (Eds.). (2022). Applied Cryptography and Network

Security Workshops: ACNS 2022 Satellite Workshops, AIBlock, AIHWS, AIoTS,

CIMSS, Cloud S&P, SCI, SecMT, SiMLA, Rome, Italy, June 20–23, 2022, Proceedings.

Springer International Publishing.

ijatl@org International Journal of Applied Technology & Leadership (online) Vol. 3/1

© 2024 Journal of Applied Technology and Leadership Page 30 of 30

Contributions

To perform the analysis described in this article, a significant amount of software was created.

Specifically, firmware was created to exercise each device in the described manner. Scripts

were written to exercise the device and capture traces using GNU Radio. The original code

from the 2018 Screaming Channels project was ported from Python2 to Python3 with added

functionality to separate the signal capture from the analysis. Multiple Python Jupyter

Notebooks were developed to aggregate/align traces and perform the statistical calculations.

The Notebooks provide a detailed walkthrough of the analysis including instructions on how to

modify configurations for other target devices. All code for the project, step-by-step instructions

for reproducing the analysis, and bodies of traces used in the analysis are available at

https://github.com/GallagherTom/screaming_satellites.

