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Abstract 

Continuing the topics posed in “Identifying System-on-a-Chip Data Leaks over Radio 

Transmissions of Small Satellites”, this article extends the exploration of data leakage of 

system-on-a-chip transceivers to quantifying suspected leaks. Specifically, it poses a 

measurement for the impact of a data leak on the device’s cryptographic security. Cryptography 

is a key security element for satellite communication, so it is important to characterize the 

impact that data leaks could introduce. In particular, this research contributes to the work posed 

in “Screaming Channels: When Electromagnetic Side Channels Meet Radio Transceivers.” The 

results show how the proposed measurement is calculated for four system-on-a-chip 

transceivers. 

 

1. Introduction 

As demonstrated by Giovanni Camurati in Screaming Channels: When Electromagnetic Side 

Channels Meet Radio Transceivers, some mixed-signal system-on-a-chip (SoC) transceivers 

leak sensitive digital information into analog broadcasts (Camurati et al., 2018, 170-173). 

Understanding How System-on-a-Chip Data can Leak over Radio Transmissions explained 

Camurati’s work for non-engineers and provided context for the potential impact of the 

Screaming Channels phenomenon on satellite communications. Identifying System-on-a-Chip 

Data Leaks over Radio Transmissions of Small Satellites provided a process for detecting 

unintentional digital noise leakage. However, the presence of a leak doesn’t necessarily equate 
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to an exploitable weakness in a system. There are a variety of factors that can limit the impact 

of an information leak. Building on the work presented in this series, this article presents a 

methodology for measuring the impact of a Screaming Channels leak on a cryptographic 

process used within the leaking SoC. Researchers using this methodology can determine how 

impactful a leak is for specific configurations of hardware and software. 

 

2.  Backgroud 

2.1. Revisiting Screaming Channels 

The Screaming Channels phenomenon is an unintentional modulation of a transmission from a 

mixed-signal circuit. Mixed-signal circuits have digital components that make calculations and 

analog components that transmit/receive wireless signals (Das, 2023). The unintended 

modulation is caused by the digital components’ power consumption affecting the voltage of 

the shared source. Whenever digital components change state (e.g., unpowered to powered), 

the components cause a small drop or spike in voltage potentially impactful to other components 

sharing the power source. As analog components are highly susceptible to voltage changes, 

these variations cause measurable impacts on wireless broadcasts made by these components 

(Marshall, 2022, 109). In particular, the amplitude of the broadcast fluctuates with the voltage 

changes. Understanding this interaction and the cybersecurity implications is not the focus of 

this article but can be found in Part 1 of this series. Instead, this article will explain how a 

researcher can measure Screaming Channels leaks in transceivers used by small satellites.  

As demonstrated in Identifying System-on-a-Chip Data Leaks over Radio Transmissions of 

Small Satellites, it is possible to detect leaks that are significantly impacting an analog 

transmission by alternating the processor between short periods of “sleep” followed by activity. 

Plotting emitted signals on a time-frequency diagram shows a solid line if the signal is 

unaffected by the leak and a recognizable pattern, such as a dashed line, if the digital changes 

are significantly impactful. Figure 1 shows the impact of alternating the processor activity on 

two devices. The Wio-E5 signal (left) shows no apparent change despite the change in 

processing, but the nRF52832 (right) shows a visible pattern created by the processor’s cycle. 
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Figure 1: Comparison of time-frequency diagrams from two different transceivers while 

alternating the processor between periods of sleep and activity. Note: contrast adjusted for 

better visibility 

2.2. Cryptography 

Cryptography is a fundamental aspect of cybersecurity. When two electronic systems 

communicate, it could be possible for an attacker to intercept the traffic. Sensitive data across 

an unencrypted channel is at risk from such interception. This is particularly concerning for 

satellite communications whose signals can cover more than a third of the Earth’s surface 

(European Commission, 2017). There are a variety of different encryption algorithms having 

different strengths, weaknesses, and performance characteristics. Generally, the encryption 

process uses the value of a digital key to alter data such that it is unintelligible until decrypted 

with the corresponding secret value (see Figure 2). This is a useful paradigm for electronic 

communication as encrypted data, a.k.a. ciphertext, can be broadcast widely as long as the key 

is kept secret.  
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Figure 2: Cryptography in practice 

 

As an easy way to understand encryption, consider this simple example using an “XOR” 

encryption algorithm. With XOR encryption, each bit of the data is compared to the 

corresponding bit of the key. If the bits are different, the resultant ciphertext bit is “1”, otherwise 

it is “0”.  

1110011 1101111 1101101 1100101 1110100 1100101 1111000 1110100   Plain Text: “sometext” 

1101101 1111001 1110011 1100101 1100011 1110010 1100101 1110100   Encryption Key: “mysecret” 

0011110 0010110 0011110 0000000 0010111 0010111 0011101 0000000   Ciphertext: “<XðåÎ” 

In the above example, the phrase “sometext” is combined with the secret key “mysecret” using 

the XOR algorithm. The resultant encrypted text is the set of characters “<XðåÎ” 1. In theory, an 

attacker who captured the ciphertext cannot understand the original message without the secret 

key. In this way, if two devices share a secret key, they can communicate securely even when 

a malicious party is eavesdropping. In practice, the XOR algorithm is extremely weak and 

susceptible to a number of cryptanalysis attacks (Wells, 2021). Fortunately, modern 

cryptographic algorithms are stronger than the example.  

 

2.3. Cryptanalysis 

Cryptanalysis is the study and practice of decrypting ciphertext without the decryption key, or 

more simply, breaking encryption to access the plain text. The simplest form of cryptanalysis 

 
1
 Some bytes are non-printable, so the displayed ciphertext is shorter than the plain text 
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is guessing every possible key value, also known as brute forcing. Consider an unrealistic 

example where a key is only 4 bits long. In this case, there are only 16 possible values for the 

key, so it is reasonable to test every possible key value to find the correct one. A modern key 

size could be 256 bits or more. A key size of 256 bits means that there are 2256 possible keys. It 

is difficult to conceptualize a number as large as 2256, but it is on par with the number of atoms 

in the visible universe (Read, 2022, 30). For this key size, testing every possible key is not 

realistic as it would theoretically take 3.3e56 years2 on a modern supercomputer (Ryan, 2021, 

39).  

Because brute forcing is unrealistic against large key sizes, cryptanalysis studies algorithms and 

protocols for subtle weaknesses. For instance, the Triple Data Encryption Standard (3DES) 

algorithm uses a 168-bit key, but due to a flaw in the algorithm, cryptanalytic attacks can reduce 

the effective key size to only 112 bits (Schwenk, 2022, 16). Once a cryptanalytic attack is 

identified against a cryptographic algorithm, it is generally avoided by developers. However, it 

is challenging to replace cryptography deployed in systems, so many systems still use legacy 

or even broken cryptography. The National Institute of Standards and Technology (NIST) 

publishes a number of documents with current recommendations for encryption and digital 

signatures (NIST, 2023). 

Regardless of the key size and security of the algorithm, ciphertext is only as secure as its secret 

key. If an attacker is able to compromise the encryption key, then decrypting the ciphertext is 

trivial. While keys are often stored securely within the device, at some point, they are loaded 

into the processor and used. While they are being used by the processor, keys may be vulnerable 

to being stolen or leaked, such as through side-channel attacks (Wong, 2021, 291). 

 

2.4. Side-Channel Attacks 

Side-channel attacks provide a different attack vector against cryptography. Rather than the 

cryptanalytic approach of cracking the algorithm without the key, side-channel attacks attempt 

to glean the value of the key (or some other sensitive data) from unintentional data leaks. Once 

the key is compromised, any intercepted ciphertext is at risk of decryption. Side-channel attack 

techniques vary widely from detecting subtle processor emissions to timing millisecond 

differences between packet transmissions (Kolokotronis & Shiaeles, 2021, 3-41). Generally, 

side-channel attacks rely on observing some second or third order effect caused by the presence 

of sensitive data that is otherwise inaccessible to the attacker.  

Electromagnetic emissions caused by cryptographic processing are historically vulnerable to 

side-channel attacks (Schwenk, 2022, 36). While traditional cryptographic side-channels are 

direct emissions from the cryptographic processor, Screaming Channels leaks appear in a signal 

transmitted by analog components within the device. For this reason, Screaming Channels leaks 

represent a new attack vector for researchers to consider.  

 
2
 330,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 years 
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While side-channel attacks represent a significant cybersecurity concern, the risk is not 

equivalent for all leaks. Subtle leaks may only expose a single bit of the cryptographic key and 

be barely detectable above ambient noise. At the opposite end of the spectrum, significant leaks 

could make every bit of the key detectable over a single encryption process. Depending on the 

subtlety of the leak, different analysis techniques may have different levels of success. Simple 

Power Analysis (SPA) is the simplest side-channel attack and measures the power used during 

a single transaction. If a significant leak is present, the data or key can be inferred directly from 

the power trace, such as in Figure 3 (Ouladj & Guilley, 2021, 21-22). Because SPA is highly 

impacted by noise or outside influence, it is effective primarily in tightly constrained 

environments (Randolph & Diehl, 2020, 3-5). More subtle leaks cause miniscule changes in the 

signal and may be tied to an internal state of the processor rather than direct key values. 

Differential Power Analysis and Correlation Power Analysis are analysis techniques that 

aggregate signal traces and use statistics to infer portions of the key.  

 

 

Figure 3: SPA of the Rivest-Shamir-Adleman (RSA) algorithm (Ouladj & Guilley, 2021, 22) 

 

2.5. Cryptographic Characteristics 

Cryptographic implementations vary widely in power utilization, speed, and encryption 

strength. Operational requirements for the device may impose limitations on the encryption 

used. Satellite hardware in particular tends to minimize power consumption to reduce battery 

and solar array mass (Vaughan, 2023). Different cryptographic implementations can have an 

impact on Screaming Channels leaks from the device, as described in the sections below.  

 

2.6. Hardware vs Software Implementation 

Some SoC transceivers, such as the Texas Instruments CC1310, offer a hardware encryption 

module separate from the main processor (Texas Instruments, 2020). This gives software 

developers the choice of implementing encryption within their application using the main 

processor or offloading encryption to the dedicated module. Screaming Channels leaks are due 

to the interaction of hardware components within the same SoC, so the physical location on the 

chip where the encryption takes place is potentially impactful. Cryptography running on the 

processor may cause a noticeable leak while a dedicated module may have negligible impact, 

or vice versa. From a generic perspective, neither implementation is more or less secure, but 
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for a specific device, analysis could produce dramatically different results for each 

implementation. Researchers should be aware of this distinction and use it to contextualize their 

findings. Depending on the purpose of the research, it may be desirable to focus on only one 

implementation or analyze each implementation.  

 

2.7. Key Size  

Key size has a direct impact on a side-channel leak. Often in side-channel analysis, only part of 

the key can be recovered through the leak (de Micheli & Heninger, 2020, 2-4). In these cases, 

if the un-leaked portion of the key is small enough, brute forcing can ascertain the remaining 

bits. It is intuitive why key size is thus impactful to side-channel attacks. Hypothetically, if a 

leak exposes half a 128-bit key, an attacker would need to brute force the remaining 

18,446,744,073,709,551,616 (264) possible key values, potentially accomplishable in 776 days 

on a modern CPU or as little as 22 days on a purpose-built system (Dinaburg, 2019). While still 

a significant hurdle, this is trivial compared to the task of brute forcing half a 256-bit key, which 

would theoretically take billions of years using billions of supercomputers (Hoofnagle & 

Garfinkel, 2022, 212). Researchers should be aware of the impact of key size on this type of 

analysis. SoC manufacturers often provide libraries or hardware modules that support specific 

key sizes, but application developers can choose to implement other algorithms with different 

key sizes. Because key size has a significant operational impact on throughput and power 

consumption, developers may be restricted by practical limitations, especially in constrained 

environments like small satellites.  

 

2.8. Side-channel Analysis Resistance 

Some cryptographic algorithm implementations have built-in resistance to side-channel 

analysis. Masking and hiding are well defined practices in reducing the risk from side-channels 

(Lee & Han, 2020, 1-2). Masking is the process of overlaying random values with sensitive 

values during intermediate steps of the encryption process and then removing the random 

overlays. Assuming that the randomized masks are secret, then the intermediate values are 

protected even if exposed through a side-channel. Hiding is the process of adding random 

operations into the encryption process. The additional operations introduce challenges for side-

channel attacks because the signal traces of a cryptographic process would not directly align 

with each other. In practice, masking and hiding make side-channel attacks more challenging 

but not impossible. There have been published attack strategies against masked cryptographic 

implementations, even recent quantum-resistant algorithms (Backlund et al., 2023, 8-10). 

Masking and hiding are provided by some, but not all, cryptographic implementations. 

Application developers often leverage manufacturer encryption modules or libraries to reduce 

development costs. Of the four devices analyzed across this series of articles, none included 

cryptographic implementations with masking or hiding. When manufacturers do not provide 

resistant implementations, developers can use resistant third-party libraries. However, as with 
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key size, side-channel resistance introduces additional power consumption and processing time, 

which may be untenable for small satellites.  

 

2.9. Evaluating Side-Channels 

A signal unintentionally emitted from a device does not necessarily constitute a data leak. A 

data leak implies that the signal carries internal information that can be obtained by an attacker. 

To show that a signal is actually a leak, it is important to show a relationship between the signal 

and some private data on the device. The relationship may not be obvious or direct. Instead, the 

leak could be the result of subtle changes to the signal from which private data can be inferred. 

While this makes it challenging to verify side-channel leaks, the field of statistics provides 

valuable tools to show a correlation between the signal and the private data.  

One such side-channel evaluation tool, Welch’s t-test, assesses whether a binary attribute has a 

meaningful impact on some characteristic of the population (Bertoni & Regazzoni, 2021, 107). 

For example, the t-test could help to determine if vegetarians have different heights than non-

vegetarians. Having sampled the population for this data, a researcher could put the height into 

two groups: vegetarians and non-vegetarians. Based on this binary attribute, Welch’s t-test 

could determine the likelihood that there is a statistically significant difference in the average 

height of vegetarians and non-vegetarians. Figure 4 illustrates this example and how the results 

of the t-test would be interpreted.  

 

Figure 4: An illustration explaining Welch’s t-test to determine whether vegetarians and non-

vegetarians have the same average height using fake data 

 

In side-channel analysis, the t-test can be useful in determining whether or not private data is 

being leaked. The Cryptographic Engineering Research Group (CERG) at George Mason 

University released the Flexible Open-source workBench fOr Side-channel analysis (FOBOS), 

which includes a t-test module. FOBOS leverages the t-test to determine whether or not the 
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value of the private encryption key has a detectable impact on a non-private power trace 

(CERG, 2019). To perform this test, the target device performs a number of encryptions using 

a single encryption key and encryptions using a random encryption key. The power traces from 

each encryption are categorized as using the fixed key or a random key, which is the binary 

attribute for the t-test. The t-test determines if there is a statistical difference between the two 

groups at any given time slice of the power traces. If so, then the key value is impacting the 

signal, or stated differently, the power signal provides information about the private key, which 

is the basis of a data leak.  

Similar to the fixed-vs-random key t-test, it is possible to more closely examine the impact of 

specific key/plaintext bits. These more detailed bitwise examinations are referred to as leakage 

models. Leakage models show how the cryptographic key and plaintext are related to the leaked 

signal. There are a wide variety of leakage models including least-significant-bit (LSB), least-

significant-2-bits (LS2B), most-significant-bit (MSB) and Hamming weight (HW) (Zhou et al., 

2022, 222-223). Shown in Table 1, each model describes a categorization based on a single 

byte of the key and/or plaintext. LSB and MSB look at a single bit of a target byte providing 

two groups (where the bit is 0 and where it is 1). LS2B looks at two bits of the target byte 

creating four groups (00, 01, 10, and 11). Hamming weight counts the number of 1’s in a target 

byte of the key resulting in 9 groups with values 0 through 8. More complex leakage models 

can be categorized based on a relationship between the key and plaintext, such as Hamming 

Distance, which counts the bit flips between the key and plaintext.  

 

Leakage Model 

Example: 010110010 Example: 11100101 

Salient bits Group Salient bits Group 

LSB [Possible groups: 0,1] 010110010 0 11100101 1 

MSB [Possible groups: 0,1] 010110010 0 11100101 1 

LS2B [Possible groups: 00,01,10,11] 010110010 10 11100101 01 

HW [Possible groups: 0,1,2,3,4,5,6,7,8,9] 010110010 4 11100101 5 

Table 1: Example of LSB, MSB, LSB2, and Hamming Weight 

 

Similar to how Welch’s t-test provides a metric regarding whether two groups are related, 

leakage models determine if the grouping has a statistically significant impact for the target 

byte. A useful metric for measuring the impact of the groupings is the signal-to-noise ratio 

(S2N). A signal-to-noise ratio compares the useful information (the signal) to undesirable 

information (the noise). For the purposes of side-channel analysis, useful information is any 

observable difference in the signal amplitude between the leakage model groupings (Buhan & 

Mangard, 2021). The not useful information is any deviation that is not related to the trace’s 

leakage group. Put simply, a high S2N value indicates that the categorization provides 
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meaningful information, which means the signal is a leak, and a low S2N value indicates that 

the categorization is not meaningful.  

 

3. Measuring Screaming Channels Leaks 

3.1. Assumptions 

Broadcasting of radio transmissions must adhere to legal restrictions for the locality in which 

the transmission is made. Additionally, researchers must be authorized to perform testing for a 

target device. These concerns are covered extensively in Identifying System-on-a-Chip Data 

Leaks over Radio Transmissions of Small Satellites. The process described here assumes that 

researchers perform analysis legally and ethically. 

3.2. Software Development 

Background on developing firmware for small satellite SoC transceivers was provided in 

Identifying System-on-a-Chip Data Leaks over Radio Transmissions of Small Satellites. This 

section describes additions to the firmware development proposed in that article. The additions 

described here are more complex than those described in the prior article and could require 

additional time and expertise in development.  

For direct control of the timing for exercising the process, the firmware should ideally provide 

a wired communications path. Wireless communications should be avoided as they could 

impact the signal being analyzed. Universal Asynchronous Receiver/Transmitter (UART) is a 

communications protocol frequently supported by SoCs. SoC development boards may expose 

a UART interface over Universal Serial Bus (USB). Regardless of the communications path 

used, it should provide a low latency method to programmatically trigger functionality on the 

device, pass data to the device, and receive data from the device. 

To produce the data required for this analysis, the application logic for the firmware should 

listen on the wired communications path for commands from the controlling device. 

Specifically, the firmware should be able to perform a given number of encryption processes 

with a specified key/plaintext. The application should also deliver status updates back across 

the communications path, such as when the encryption process completes. Additionally, if more 

than one encryption implementation is to be tested, such as for devices that provide both 

hardware and software implementations, then it is valuable for the application to accept 

commands that dictate which implementation to use.  

Below is pseudocode for the firmware’s application logic discussed above3: 

main() { 

 CypherText = ""; 

 initBoard(); //enable general device hardware 

 
3
 Source code for the devices analyzed in this research is available through the link in Contributions  
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 initRFBoard(); //enables the Radio  

  

 disableSpecialRFFeatures(); //such as Frequency hopping 

 SetFrequency(900MHz); 

 SetPower(11); //Power levels are vendor specific 

 StartContinuousRadioTransmit(); //transmit a dummy signal 

 while(1) { //loop this logic until device is powered off 

  SendOutput(“Awaiting Command”) 

  Command = AwaitExternalInput() 

If (Command = “Encrypt”) { 

Repetitions = AwaitExternalInput() 

Algorithm = AwaitExternalInput() //If more than one 

   Key = AwaitExternalInput() 

   Plaintext = AwaitExternalInput() 

   SendOutput(“Starting Encryption”) 

   For(Repetitions) { 

    CypherText = Encrypt(Key, Plaintext, 

Algorithm); 

   } 

   SendOutput(“Encryption Complete”) 

  } 

 } 

} 

Unlike the firmware developed previously in this series, the firmware described here now 

depends on an external controller. This external component is a separate application script that 

coordinates capturing traces during encryption periods. The logic for this script is 

straightforward, but robust testing should be performed as complexities arise when passing data 

between devices. A key aspect of the controlling script is correctly configuring the frequency 

and gain of the software-defined radio receiver. The GNU Radio Companion (GRC) user 

interface provided in the prior article can be used to identify acceptable values for these settings. 

The importance of selecting appropriate gains should not be overlooked. Gain amplifies the 

received signal at various stages of its processing. Too little gain and the received values will 

be insignificant; too much gain and background noise overpowers the signal. Tailoring the 

receiver to the signal under analysis is an iterative process. While this iteration is part of the 

collection/analysis process, developing a controlling script that can easily modify these values 

is beneficial. 
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Below is pseudocode for the external controller script discussed above4: 

Traces_to_capture = X  

main() { 

 EstablishCommsWithTargetDevice() 

 EstablishConnectionWithReceiver() 

ConfigureReceiver(TargetFrequency, Gain) 

 While(GetTargetDeviceResponse() != “Awaiting Command”) { 

  Wait 

} 

 For(Traces_to_capture) { 

  Key = Random() 

  Plaintext = Random() 

  Receiver_StartTrace() 

  SendCommandToTargetDevice(“Encrypt”) 

  SendCommandToTargetDevice(1) //Repetitions 

  SendCommandToTargetDevice(Key)  

  SendCommandToTargetDevice(Plaintext) 

 While(GetTargetDeviceResponse() != “Encryption Complete”) 

{ 

  Wait 

} 

  Trace = Receiver_CompleteTrace() 

  Save(Trace, Key, Plaintext) 

 } 

} 

The guidance in this section recommends one approach to develop firmware capable of 

supporting this analysis. Alternate approaches could be necessary depending on the target 

device. For instance, if a wired communications path is not feasible, then it may be necessary 

to use different means to trigger the encryption process. Different collection techniques will 

have varying impacts on the resultant traces, such as trace alignment, and could require 

additional effort during analysis.  

 

 
4
 Source code for the devices analyzed in this research is available through the link in Contributions  
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3.3. Collecting the Data 

With the external script and firmware configured, the target device located inside an RF 

enclosure is attached to the external command laptop. A HackRF One software-defined radio 

is connected to the laptop with its antenna connected inside the enclosure, see Figure 5. The 

laptop executes the script and records a set number of traces. Initially, while establishing a test 

environment, hundreds of traces are sufficient to show the configuration is functional. For 

performing the analysis, the greater the number of traces, the more accurate the results. Sizes 

of traces will vary depending on the device setup and collection methodology, so researchers 

will have to account for storage and processing time based on their resources.  

 

Figure 5: The environment for collecting traces 

 

3.4. Analyzing the Data 

This section is intended to provide an outline for the process of analyzing traces to measure the 

impact of a detected Screaming Channels leak. It would be easy to assume that such a process 

is linear, and that the severity of a leak could be determined through a set number of steps. In 

reality, the process requires iterative testing of configurations to optimize visibility. It may be 

challenging to perform this analysis without prior experience. It may be helpful for researchers 

to analyze a known-vulnerable target prior to assessing an unconfirmed leak. Understanding 

the output from a known leak will aid in interpreting the results of an unconfirmed leak. For 

ease of entry into this research, data collected from this study is available through a link in the 

Contributions section of this article. Researchers can gain experience in analyzing the provided 

data before assessing a new target.  

An optional first step in analyzing the data is trimming each trace to focus on the segment 

containing the cryptographic process. There is a significant lag created by initialization/closeout 
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of the software-defined radio (SDR) and communication between devices. The lag results in a 

larger than necessary trace that captures uninteresting data both before and after the 

cryptographic processing. While it is possible to complete the analysis against the full range of 

the trace, such processing can create unrealistic hardware requirements or drastically increase 

the analysis timespan. However, it is difficult to predict where in the trace the cryptographic 

process occurs. In some cases, the cryptographic process may cause a perceptible change in the 

trace such as a drop in amplitude allowing researchers to easily hone in on the portion of 

interest. It is also possible to trigger visible changes in the signal immediately prior to and after 

the encryption process; altering transmission frequency or broadcast power are two such 

techniques. Figure 6 shows how spiking the signal strength immediately before and after the 

encryption process highlights the interesting part of the trace. In the case of the CC1310, the 

sample trace is reduced from approximately 800,000 samples to around 20,000 samples, 

resulting in a 97% savings in storage and processing.  

 

Figure 6: A full traces of the Texas Instruments CC1310 using signal spikes to highlight the 

start and end of the encryption process 

Each trace is a series of snapshots measuring the signal strength at a specific time. The analysis 

compares the xth sample of each trace and assumes that the device was doing the same thing at 

each time across all traces. For instance, the 316th sample of each trace could be the middle of 

the first round of encryption and the 1099th sample may be the start of the last round of 

encryption. The device performing the same action at any given trace index is a core assumption 

of the analysis. In an ideal world, because every trace is generated by the same process, they 

would be completely aligned. In reality, the collection process introduces small variability in 

each trace. Failure to properly account for this misalignment can distort the results. Signal 

alignment is a complex topic with a variety of proposed solutions (Pearson et al., 2019, 21). 

Using an RF enclosure reduces external noise while the full process control provided by the 

custom firmware provides consistency across traces. Using a script to ensure that traces are 

properly aligned is recommended. An alignment script is available in the Contributions section 

of this article.  

Cryptographic processing 

Frequency 

spikes 
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With well-aligned traces, the analysis can continue with evaluation of the leakage models. 

Leakage models label each trace according to key and plaintext values for that trace. The 

analysis then determines if that leak model categorization is impactful to the set of traces at 

each time slice. For example, consider a hypothetical case where each trace is binned according 

to whether the first bit of plaintext is a 0 or a 1. If analysis showed that the variance between 

the groups is greater than the ungrouped variance, then there would be a meaningful difference 

in the signal that correlated to the first bit of plaintext. The correlation is greater if the variance 

between the group’s means is larger or if the noise is smaller. There are a wide variety of 

possible leakage models that can be used to categorize the traces. Once categorized, the process 

of calculating the signal-to-noise ratio is the same. Below is pseudocode to calculate the SNR 

for a leakage model discussed above5: 

GroupMeans = [] 

TraceGroups = OrganizeByLeakageModel(Traces) 

For (group_id, group_traces in TraceGroups){ 

 GroupMeans[group_id] = CalculateMean(group_traces) 

} 

MeanVariance = CalculateVariance(GroupMeans) 

For (trace_id, trace in Traces) { 

 TraceDifferences[trace_id] = trace - 

GroupMeans[GetGroupID(trace)] 

} 

DifferenceVariance = CalculateVariance(TraceDifferences) 

S2N = MeanVariance / DifferenceVariance 

Once the SNRs are calculated, it is useful to view them graphically. The Python module 

matplotlib is commonly used in data science to provide this capability. While the visual of SNR 

over time for a leakage model is useful, it does not provide an overall measurement for a 

potential leak. This article proposes an analytic to measure the impact of a leak on a device’s 

cryptography. SNR can be impacted by a number of factors creating biased results. To measure 

the significance of a leak, it is useful to compare the SNR of the potential leak to the background 

SNR while the leak is not present. This article proposes that such a measurement can be 

accomplished by comparing the mean of the background noise to the maximin SNR. This ratio, 

hereafter the leak ratio, would be computed by dividing the max SNR by the trimmed mean of 

the SNR values. A trimmed mean is the average of a set of values after removing some number 

of the greatest and least values from the set. The formula for calculating the leak ratio would 

thus be:  

LeakRatio = Max(SNRs) / TrimmedMean(SNRs) 

 
5
 Source code is available through the link in Contributions  
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A challenge in calculating the leak ratio is in determining the portion of data to remove for the 

trimmed mean. A simple way of accomplishing this would be to collect significantly larger 

traces than needed to ensure that the volume of samples during normal processing dwarfs the 

samples containing cryptographic processing. An alternative solution would be to include logic 

during collection to time the encryption routine and ensure that its time slice fits within the 

trimmed data. For example, if using a 20% trimmed mean, the encryption process would need 

to last no longer than 20% of the trace’s total time.  

 

4. Results 

4.1. Nordic Semiconductor nRF52832 

During the 2018 Screaming Channels research, the Nordic Semiconductor nRF52832 was 

shown to exhibit a leak across its broadcast signal. Additionally, the framework provided in 

Identifying System-on-a-Chip Data Leaks over Radio Transmissions of Small Satellites 

similarly showed strong evidence of a leak in the device. As a Bluetooth transceiver, the 

nRF52832 is not a viable communications device for small satellites, but including this device 

in the analysis provides a baseline for how an exploitable leak appears in the analysis results. 

The other benefit to including the nRF5232 in this analysis is that the Screaming Channels 

researchers shared traces from the original study in a public repository (Camurati, 2021). 

Because the provided traces use random plaintext and a random key, only the SNR analysis can 

be performed; a t-test requires a group of “fixed key” traces as well. The traces were analyzed 

using a Jupyter Notebook that implements the previously described analysis. Figure 7 shows 

that each analyzed leakage model displays a clear spike in the signal-to-noise ratio at 

approximately the same time slice. Every byte6 of the 128-bit key has a unique SNR for each 

model, meaning that different models could be more or less accurate in predicting specific 

bytes. Overall, there is a striking difference between the SNR of the non-cryptographic 

processing and the cryptographic processing, which begins around time slice 850 in the figure.  

 

 
6
 A byte is an 8-bit segment of data 
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Figure 7: SNRs for the nRF52832 traces using the LSB, LSB2, MSB, and HW leakage models.  

Visually, it is clear that the SNR during the cryptographic processing reaches more than 10 

times that of other processing. Using the formula proposed above, the leak ratio can be 

calculated with the results in Table 2. While different bytes of the key are exposed to varying 

degrees by each of the leakage models, aggregating these metrics shows that the MSB leak 

model provides an average leak ratio of 135.3. Because the 2018 Screaming Channels research 

proved that the cryptographic key can be compromised across this leak, it stands to reason that 

devices with similar or larger leak ratios are at higher risk to such compromise. Side-channel 

analysis and cryptanalysis are complex fields with evolving techniques and challenges, so a 

high leak ratio alone should not be taken as proof that a leak is exploitable. Instead, the leak 

ratio provides one metric that can be calculated without extensive background in the field.  
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 LSB LSB2 MSB HW 

Byte 1 74.4 4.3 36.8 11.8 

Byte 2 55.1 12.9 88.5 4.2 

Byte 3 12.9 7.7 201.1 11.2 

Byte 4 62.0 8.5 119.9 16.7 

Byte 5 44.9 22.5 88.6 18.0 

Byte 6 6.9 6.1 38.2 7.4 

Byte 7 6.9 6.2 34.7 5.9 

Byte 8 43.5 7.7 291.7 4.3 

Byte 9 38.9 20.2 207.2 3.7 

Byte 10 7.2 6.5 287.7 14.2 

Byte 11 18.6 13.3 195.7 12.1 

Byte 12 14.0 5.1 17.5 15.4 

Byte 13 59.2 20.3 183.3 5.2 

Byte 14 5.2 6.3 99.3 9.4 

Byte 15 14.4 5.5 104.1 13.0 

Byte 16 33.0 9.9 170.2 24.5 

Average 31.1 10.2 135.3 11.1 

 

Table 2: Leak ratio of LSB, LSB2, MSB, and HW for nRF52832 

 

Because the traces provided by the original researchers did not include fixed-key/fixed-

plaintext traces, a Welch’s t-test could not be performed against these traces. In order to 

accommodate a t-test for the nRF52832, additional traces were collected for this article. The 

samples were collected, filtered, and aligned according to the process described above. After 

aligning the samples, the samples were able to be processed by the t-test. For this test, two sets 

of 10,000 traces were collected where one set uses a single encryption key for every trace and 

the other uses a random key for every trace. The t-test measures the probability that the averages 

of each group are the same. If the averages are expected to be different, then we have evidence 

that the key value has an impact on the signal. Figure 8 graphs the probability-value (pval) from 

the t-test at each time slice. Based on the values in this graph, a large section of the trace, 

approximately from sample 310,000 to sample 350,000, the pval is generally very low, less 

than 0.1e-7 (i.e., 0.00000001). Despite appearances, this is not a bar graph; there are multiple 

values at the bottom and top of the graph resulting in consecutive vertical lines. The values in 

this segment of the trace are likely to be influenced by the value of the encryption key, so there 

is strong evidence that a leak is present. It stands to reason that this is the encryption timespan. 
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Figure 8: Welch’s T-test comparing variable and fixed key traces of the nRF52832. Note that 

the y-axis is clipped at 1e-7 and all non-visible data is above that threshold. 

Performing cryptanalysis on the leak is beyond the scope of this article and was already 

completed during the 2018 study. However, if this was a device with an unverified leak, then 

the calculated leak ratio would suggest a likelihood that the leak is significant. The t-test results 

would highlight the trace segment during which the leak is most likely to occur.  

 

4.2. Texas Instruments CC1111 

As discussed previously in this series, the CC1111 is nearly identical to the CC1110 used in the 

Tartan Artibeus small satellite. Identifying System-on-a-Chip Data Leaks over Radio 

Transmissions of Small Satellites identified a potential Screaming Channels leak in the CC1111 

at 868.5 MHz. The CC1111 was the only device, other than the known vulnerable Bluetooth 

transceiver, which showed significant indications of a leak according to the proposed detection 

technique.  

Due to development environment licensing issues, the firmware for the CC1111 was not 

developed with a communications path to the command laptop. To capture the required traces 

despite this limitation, the firmware was configured to loop the following process at startup: 

turn radio transmitter off, wait 50 milliseconds, turn radio transmitter on, perform single 

encryption, and finally wait 1 millisecond. The command laptop initiated a trace on the SDR at 

the target frequency and then the CC1111 was powered on. Because of the visible impact of 

enabling and disabling the radio, as seen in Figure 9, it was straightforward to programmatically 

separate the aggregated traces into individual samples capturing periods where the transmitter 

was on. A Python Jupyter Notebook script was used to separate the traces and is provided in 

the repository linked in the Contributions section. The most significant issue with collecting 

samples in this manner is the potential for trace misalignment during the separation process. 
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Because the amplitude spikes in the trace happened at precise intervals, there is confidence that 

separation did not cause significant misalignment. Additionally, the signal alignment routine of 

the analysis can correct minor alignment issues. 

 
Figure 9: Four encryption cycles of the CC1111 showing distinction between each cycle 

 

Welch’s t-test of variable vs fixed keys showed interesting results for the CC1111. As can be 

seen in Figure 10, there are many areas in the trace where the t-test pval drops below 0.1e-7. A 

low p-value is evidence that the values were likely to be generated by different systems. Ideally, 

low pvals would be expected only when the value of the key was impactful to the resultant 

signal. In the case of the CC1111 capture, the encryption process occurs at the end of the 

collection, so there should be no correlation with the key across the entire trace. Instead, it is 

likely that the process of creating/collecting the traces introduced bias across the trace. 

However, it is noteworthy that the low pvals are more dense toward the end of the trace, around 

slice 35000, when the cryptographic process is expected to occur. If the CC1111 traces could 

be collected using the recommended process, it is likely that the low pvals outside of the 

encryption window would mostly or entirely disappear.  

Device 

startup 

Encryption 

Process 
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Figure 10: Welch’s T-test comparing variable and fixed key traces of the CC1111 

 

Unlike the nRF52832, the CC1111 did not have leakage models that showed significant SNR 

spikes during the encryption process. Figure 11 graphs the SNRs during the entirety of the trace 

and shows no clear segment where the SNR is higher than the rest of the trace. As expected, 

these SNRs yielded low leak ratios as well. The average leak ratios for the LSB, LSB2, MSB, 

and HW models were 33.4, 10.3, 33.7, and 12.7 respectively. While the t-test shows a potential 

area of interest, the leak ratio for this device is relatively low. Performing cryptanalysis to verify 

the exploitability of such a leak is outside the scope of this research. Based on the measurements 

proposed here, the leak is significantly weaker than the nRF52832 and would likely require 

additional traces or alternative techniques to successfully compromise the key if possible. 
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Figure 11: Computed SNR for the CC1111 using the LSB, LSB2, MSB, and HW leakage 

models. 

 

4.3. Texas Instruments CC1310 

As discussed previously in this series, the CC1310 is used in the Monarch chip satellite. 

Identifying System-on-a-Chip Data Leaks over Radio Transmissions of Small Satellites 

identified anomalous signal artifacts for the CC1310 at 847.9 MHz. These anomalies did not 

adhere to the framework's prediction for a Screaming Channels leak, but the signal will be 

evaluated here to determine if a leak is present.  

To support this research, encryption traces for the CC1310 were captured and aligned using the 

recommended process. Welch’s t-test computed the likelihood that the value of the key was 

impactful of the resultant signal. As seen in Figure 12, several pvals from the t-test were low, 

below 0.1e-7. These segments of low pvals could indicate when encryption is taking place and 

impacting the resultant signal.  
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Figure 12: Welch’s T-test comparing variable and fixed key traces of the CC1310 

 

Similar to the CC1111, the CC1310 did not show significant SNR spikes during encryption. 

Figure 13 graphs the SNRs during the entirety of the trace and shows no clear segment where 

the SNR is higher than the rest of the trace. The average leak ratios for the LSB, LSB2, MSB, 

and HW models were 30.2, 9.6, 28.3, and 11.2 respectively. Like the CC1111, the leak ratio 

indicates that the device is likely more challenging to successfully extract a key than the 

nRF52832. Based on the t-test, there is a clear segment for cryptanalysis researchers to focus 

efforts.  
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Figure 13: Computed SNR for the CC1310 using the LSB, LSB2, MSB, and HW leakage 

models. 

 

4.4. Seeed LoRa Wio-E5 

The Seeed LoRa Wio-E5 provides similar capabilities to the transceiver used by the AmbaSat 

project. Identifying System-on-a-Chip Data Leaks over Radio Transmissions of Small Satellites 

identified unintentional broadcasts by the device but none that correlated to patterns predicted 

from Screaming Channels leaks. It is unlikely that the analysis performed here will identify a 

leak, but the device is included for the sake of completeness.  

Like the CC1111, the collection process was not implemented using the recommended 

approach due to issues in establishing a wired communication route between the command 

laptop and the device. Instead, the device was configured to loop through transmit, encrypt, and 

sleep patterns. Also similar to the CC1111, this alternate collection method appeared to 

introduce anomalous artifacts as the t-test shows low pvals across most of the trace, Figure 14.  
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Figure 14: Welch’s T-test comparing variable and fixed key traces of the Wio-E5 

 

The Wio-E5’s results from the SNR analysis and leak ratio calculation were similar to those of 

the CC1310. Figure 15 shows the SNRs of the leakage models with no clear indication of the 

encryption process. Average leak ratios for the LSB, LSB2, MSB, and HW models were 31.2, 

9.8, 30.6, 12.4 respectively. Because the previous article showed no indication of a Screaming 

Channels leak for this device, it is possible that these leak ratios could indicate a lower risk of 

an exploitable leak.  
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Figure 15: Computed SNR for the Wio-E5 using the LSB, LSB2, MSB, and HW leakage 

models. 

 

5. Countermeasures 

Screaming Channels is a recognized vulnerability. Both hardware manufacturers and software 

developers share responsibility in ensuring SoC transceivers are resilient against this potential 

weakness. Attackers do not depend on a single attack vector; likewise, defenders should avoid 

complacency of relying on a single defense mechanism. Defense in depth is the strategy of 

deploying multiple countermeasures in the hope of eliminating threats with the understanding 

that the best that can be done is mitigating part of the risk.  

Countermeasures specific to Screaming Channels include practices such as masking or hiding, 

better known as cryptanalytic resistant algorithms. Device manufacturers can use such 

algorithms in dedicated hardware modules or supplied software libraries. Application 

developers should ensure that provided algorithms are resistant or implement third-party 

libraries with these features. Another countermeasure with potentially fewer moving parts is 

the idea of alternating signal strength, which introduces noise into the signal amplitude making 

side-channel analysis more complicated without affecting the signal’s intended 

frequency/phase modulation.  
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Perhaps some of the more effective methods are that of frequent rekeying and the use of 

frequency hopping; though both introduce their own challenges. For re-keying, NIST provides 

specific guidance on the cryptoperiod (i.e., lifespan) of a key based on its use and purpose 

(NIST, 2020). Re-keying in accordance with NIST recommendations, or even more frequently, 

provides a “moving target” for Screaming Channels attacks. Frequency hopping likewise 

introduces complexity for the side-channel analysis by moving the signal in a pre-planned 

random pattern across multiple channels. Usable spectrum in frequency hopping must be broad 

enough to allow for sufficient randomization. While re-keying and frequency hopping provide 

significant protection, as stated, reliance on any single countermeasure is insufficient. Use 

defense in depth to provide sufficient protection from Screaming Channels attacks.  

 

6. Conclusions 

Pretend momentarily that you want to find out if there are mice in your home. If you set a trap 

and it catches a mouse, you know there was at least one mouse in your home. However, if the 

trap does not catch a mouse, can you be confident your home is mice-free? Of course not. 

Similarly, if researchers demonstrate extracting a cryptographic key across a side-channel leak 

for a particular device, it is clear that the device is susceptible to side-channel attacks. If 

researchers fail to exploit a target device, though, it does not assure that a leak is absent. It’s 

possible that the researchers were not looking at the correct frequency, using the correct 

cryptanalysis methods, or aggregating sufficient data. For this reason, it is helpful to use 

statistics like t-test p-values and signal-to-noise ratios to characterize leaks. Additionally, this 

article proposes a new metric, leak ratio, that compares the SNR during cryptography to the 

SNR during non-cryptographic processing. The leak ratio accounts for background SNR and 

provides a metric as to how significant the leak is against a cryptographic key using a specific 

leak model. Researchers can use the leak ratio to better characterize potential leaks prior to 

attempting cryptanalysis to confirm the leak. 

This article demonstrated a process to collect and analyze signal traces for Screaming Channels 

leaks. Four target devices were evaluated based on the findings from Identifying System-on-a-

Chip Data Leaks over Radio Transmissions of Small Satellites. The first device, the nRF52832, 

was a Bluetooth SoC known to exhibit a leak while the other devices were SoC transceivers 

that are used or could be used for small satellite communication. Two of the small satellite 

transceivers, the CC1111 and CC1310, exhibited suspicious signals as highlighted in the prior 

article. The t-test of these two devices suggested a time slice during which a leak could be 

present. The final device, the Wio-E5, showed no suspicious signs of a leakage during prior 

analysis in this series. The leak ratios of all three small satellite transceivers were relatively 

close to each other and orders of magnitude smaller than the known leak of the nRF52832.  

Leak ratio is a proposed measurement for the impact of a leak. These initial findings would 

suggest that the potential leaks of the three satellite transceivers are less impactful than the leak 

on the Bluetooth device. However, because the exploitability of the leak was only confirmed 

on one of the four devices, it is unclear how effective using leak ratio as a measure truly is. 
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Future efforts against a wider array of targets could help to prove leak ratio as an effective 

measurement for Screaming Channels leaks.  
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Contributions 

To perform the analysis described in this article, a significant amount of software was created. 

Specifically, firmware was created to exercise each device in the described manner. Scripts 

were written to exercise the device and capture traces using GNU Radio. The original code 

from the 2018 Screaming Channels project was ported from Python2 to Python3 with added 

functionality to separate the signal capture from the analysis. Multiple Python Jupyter 

Notebooks were developed to aggregate/align traces and perform the statistical calculations. 

The Notebooks provide a detailed walkthrough of the analysis including instructions on how to 

modify configurations for other target devices. All code for the project, step-by-step instructions 

for reproducing the analysis, and bodies of traces used in the analysis are available at 

https://github.com/GallagherTom/screaming_satellites. 

 


